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Abstract. A description of transport hopping processes at the Fermi surface in insulators is
presented in which the role of internal fields is emphasized. Taking account of these fields
up to the quadrupole term, we find that the conductivityσ at low applied fields obeys a
ln(σ/σ0) ≈ −(T0/T )

β law, with β varying from 1/2 to 1/4 as the temperature is raised.
Typical orders of magnitudeL ≈ 105 V cm−1, Q ≈ 100 A2 and d ≈ 3

√
Q for the field,

the quadrupole moment and the dipole length respectively can be obtained from experimental
data in theβ = 1/2 andβ = 1/4 regimes.

The existence of internal fields of order of magnitude 104–105 V cm1 has been previously
suggested to explain the broadening of optical and spin resonance lines [1] in insulators.
Subsequent work on Poole–Frenkel systems indicated the need to account for such fields in
order to arrive at a consistent explanation of transport data; the obtained values of the fields
agreed with those obtained by optical means [2]. Later on, a theoretical argument based
on a diffusion equation was advanced [3] indicating the need for the introduction of an
internal field in transport processes. Around coulombic centres, such a field superimposes
upon the Coulomb field producing a barrier at zero applied external field, and hence in
the ohmic region, which the carriers can overcome either assisted by the temperature or by
tunnelling at low temperatures. It allowed an explanation of deviations from the classical
Poole–Frenkel characteristics, especially at low fields [2].

In this paper the internal field idea is proposed for disordered insulators in which
transport occurs at the Fermi level. Examples are insulators of Mott’s type and Coulomb gap
Efros–Shklowskii type, and granular metals in the dielectric regime. We suggest that internal
fields result either from the fluctuation of the charge among the sites while maintaining
electrical neutrality (Mott’s case), or from coulombic fields due to the charging of sites
(Coulomb-gap case) or grains during electron hops. Taking account of contributions to the
local fields up to the quadrupole term we are able to give a unified picture of hopping
mechanisms as an internal field-assisted conduction. We obtain an estimate of such fields
which indicates an almost universal value.

The charge transport in a disordered system can be studied with the Fokker–Planck
equation in the Smoluchowski limit for the distribution functionf [3]:

∂f/∂t = (kT µ/e)div
[
e−U/kT grad

(
f eU/kT

)]
(1)
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whereµ is the mobility, andU(r) the potential energy of a carrier, including the contribution
of the field of the actual charges distributed in the system and in general also the contribution
of the applied electric field. Under steady-state conditions the left-hand side vanishes, so
we have

e−U/kT grad
(
f eU/kT

) = A (divA = 0). (2)

On neglecting the solenoid vectorA, the solution isf = Ce−U/kT . In general, however,
the solution turns out to be of the form

f = Ce−(U+δU)/kT (3)

where the quantityδU(r) defines corrections toU(r) which can be interpreted as the
potential energy due to an internal fieldL = −gradδU/e. This field satisfies the equation,
according to (1) and (2)

divL = (A/f )grad(U + δU) = (eL · gradU − (eL)2)/kT . (4)

In general,δU(r) is a random function whose origin is (excluding the applied field) the
Coulomb interactions of carriers with the actual charges in the system. According to (4),
the fieldL will be solenoidal when grad(U + δU) = 0, i.e.L = −gradU/e, but in general
divL 6= 0, indicating from Gauss’ law a polarization charge. The conductivity of the system
can be evaluated through the relation

σ = f neµfP (ξ) dξ (5)

wheren is the carrier density. Since the local field corrections fluctuate in space, an average
over all conducting paths is performed, with an assumed probability density distribution
P(ξ) of the paths or equivalently of the internal fieldL. In the presence of random disorder,
a distribution of the formP(ξ) = ke−2αξ , whereα is a constant, can usually be applied.
The resultant integration can hardly be performed exactly. Asymptotic expansions of (5)
can be obtained via an approximate scheme, i.e. a saddle-point method, looking at stationary
points of fP (ξ). If rs represents such a point we can assume thenσ ≈ f (rs)P (rs), for
constantn andµ [2–4]. When the distributionP(ξ) is exponential andf is given by (3),
stationarity leads to the condition forrs

1(U + δU) = −2αkT . (6)

We note that, in general, this condition leads, according to equation (4), to divL 6= 0, i.e.
to a polarization charge.

The internal field corrections have been previously discussed [2, 3] in Poole–Frenkel
systems. We review such a case to introduce the results of the other insulators where
conduction occurs at the Fermi surface.

In this case the transport process is determined by the ionization of randomly distributed
centres [2]. In the classical study of this effect, it is assumed that the relevant potential
energy in (1) is due to the coulombic field experienced by carriers near the centre left
charged in the ionization process, ignoring the effect of the surrounding centres (single-
centre approximation). On the other hand, the internal field arises just from all these other
surrounding centres. If centres are located at random positionsRi , for carrier distances
r close to a given centre considered atR = 0, the potential energy of a carrier can be
expanded in the form(r � Ri)

U + δU = − e2

4πε0r
− (E +L) · r + . . . L = 6

(
e/4πε0R

2
i

)
R̂i (7)

whereR̂i denotes the unit vector ofRi .
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Assuming that emission occurs above the barrier given by equation (7) along the applied
field direction and that the local field is parallel toE, takingP(r) = k = constant (random
centre distribution), we find thatrs is determined by the maximum of the barrier, i.e.
1(U + δU) = 0, according to equation (6) and we thus obtain

σ ≈ f (rbarr) = σ0eβ
√
(E+L)/kT (

β = e√e/4πε0
)
. (8)

In this case the internal fieldL is solenoidal around the top of the barrier, as follows from
equation (4), implying absence of polarization charge.

Despite the particular configuration of the fieldsE andL, equation (8) has been shown
to be a notable improvement of the original Poole–Frenkel result (corresponding toL = 0)
and more extensive analysis including realistic configurations [2, 3] has further shown the
relevance of the internal field corrections.

The order of magnitude of the internal field here isL ≈ e/4πε0r
2
barr , independent of

temperature.
Variable-range hopping at low applied fields (where the internal field effects are

dominant) is considered, assuming the usual approximation of hopping between a pair
of centres [4]. The relevant contributions to the potential energyU(r) in equation (1) is
a short-rangeU0(r) produced by disorder, responsible for carrier localization in space, to
which internal local field corrections add, whose origin may be traced back to coulombic
forces on carriers from the localized charge on the sites. This charge may be assumed to be
confined to a region of dimensiond much smaller than the distancer (evaluated from the
initial site) of the carriers at the final hopping sites, so that at sufficiently large distances
r � d we can assume the expansion in multipoles, at applied fieldE → 0 (in CGS units
as usual):

U + δU = U0+
(
e2/r + ep/r2+ e2Q/r3+ . . .)/ε (9)

where in parenthesis the internal field corrections are evidenced. Here,ε is a relative
dielectric constant,e is the charge of a site andp and Q are dipole and quadrupole
moments respectively. Tunneling from one localized state to another can be accounted
for by a probability distribution of the formP = ke−2αr , whereα is the envelope of the
wavefunctions [4]. Using equation (6) to findrs as a function of temperature and substituting
in the saddle-point resultσ = σ0f (rs)P (rs) we find

ln
(
σ/σ0

) = −f (y, λ) = −2α(3Q)1/2
[
1/y + ((4/3)y3+ 2λy2+ 4y)/x

]
(10a)

y4+ λy3+ y2− x/4= 0. (10b)

We have used dimensionless inverse distancey = (3Q)1/2/rs and temperaturex = T/Tx
with Tx = e2/24kαQ, the latter being the transition temperature of the crossover between
the Coulomb-gap and Mott’s regimes [5], and whereλ = 2p/q(3Q)1/2 is the ratio between
the dipole lengthp/q and the quadrupole length(3Q)1/2. In the absence of the dipole term,
i.e. λ = 0, y obeys a biquadratic equation with coefficients independent of the system, i.e. it
has a universal behaviour. In this case we get the result of Aharonyet al [5], corresponding
to f (y, 0) = Af (x) whereA = (8/3)α(6Q)1/2 and

f (x) = 1+ [(1+ x)1/2− 1]/x

[(1+ x)1/2− 1]1/2

a universal function ofT/Tx .
As first shown by Aharonyet al, such a universal behaviour holds for the general case

in which the potential energy is a sum of terms proportional to 1/r and 1/r3, irrespective
of their physical meaning. The limit forms off (x) for T � Tx and forT � Tx [5] lead to
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ln(σ/σ0) = −(T0/T )
β with β = 1/2 at T � Tx andβ = 1/4 at T � Tx , which reproduce

the Coulomb gap results of Efros–Shklowskii at lowT and Mott at highT [5–7]. With
our parametrization of the potential energy, equation (9) we find thatT ′0 = 8e2α/εk as
T � Tx andT0 = (3/2)(8/3)4α3Q/k asT � Tx . We deduce that these two limit cases
correspond to the dominance of the charge term (lowT ) or the quadrupole term (highT )
in the multipole expansion. The quadrupole term of the internal field provides in a natural
way a direct physical meaning of the potential energy term≈ 1/r3, usually attributed to
an average energy spacing1E = (1/NF r3) of the levels of the localized states, withNF
a density of states at the Fermi level [6]. Similar conclusions can be obtained in two
dimensions. In such a case the quadrupole term is of the forme2Q/r2 so that there is a
universal behaviour withβ = 1/2 at lowT andβ = 1/3 at highT with similar expressions
for the parametersTx , T ′0 andT0.

When the dipole term is non-zero, the equation obeyed byy has a solution which
depends onλ, i.e. universality is lost, andf has to be solved numerically in general. In
figure 1 and figure 2 we reportf (y(x), λ) resulting from such a numerical analysis for
various values ofλ, together with the universal caseλ0 of Aharonyet al [5]. We find that,
despite the lack of universality, for not too large valuesλ < 3 the curves can be made to
superimpose with great accuracy (figure 3) to the universal curve by a suitable rescaling of
Tx , corresponding to an increase ofTx as compared to the universal case.

Figure 1. f = f (y(x), λ)/[(8/3)α√6Q] as a function of reduced temperaturex = T/Tx for
various values ofλ. fλ = 0 refers to the case of [5].

Granular metals in the dielectric regime show insulating behaviour attributed to transport
occurring through hopping of Fermi carriers between metallic grains dispersed in a dielectric
matrix of width s between the grains [8]. The local field arises here from the charging of
the grains during the hopping process. Ifr is the position of a carrier located close to the
surface of grains such thatr ≈ d, d being the radius of grains, one has for the total potential
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Figure 2. Same as in figure 1 orλ < 3.

Figure 3. Same as figure 1, showing the effect of changing the scaling temperature.
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energy

U + δU = e2/4πε0εr − e2/4πε0ε(r + s). (11)

The two terms represent the charging energy, occurring at the grain left charged. The
two variablesr and s are stochastic in nature. They can be connected through a relation
s/r = A = constant [8] from requirements of uniform internal composition. The charging
energy can thus be rewritten in the forme2A/4πε0εr(A + 1). On using the probability
of the form P = ke−2χr , χ being a suitable tunnelling factor [8], and the saddle-point
procedure to maximize the emission probability one finds at the barrier point

σ = σ0e−(T0/T )
1/2

(12)

whereT0 = 2χe2A/πε0ε(A+ 1)k.
The internal field is of the order of magnitudeL ≈ e/4πε0εd

2A and is in general not
solenoidal, due to a polarization charge between grains.

In general the simple assumptions/r = constant may be relaxed on making more
realistic assumptions on the probability of the grain dimension. In such cases, calculations
predict [9–11] also temperature dependences of the form (12) with the exponent 1/4.
The Coulomb term alone may prove to be a poor description of the internal field at the
grain surface, and more terms arising from dipole and quadrupole contributions may be
investigated.

Here too, crossover mechanisms may be expected. However, the distribution of the
charge on the grains has different physical origin than the charge present on sites during
hopping processes, the latter being related to the localization of the wavefunctions. Thus,
the behaviour of the conductivity of granular systems may differ quantitatively, although
not qualitatively, from the one in hopping systems [5].

Transport experiments in various systems can be parametrized by means of the internal
field model and thus allow a determination of these fields. For Poole–Frenkel systemsL

can be deduced [3] either by fitting theI–V characteristics at largeV or from the activation
energy in the Arrhenius plots at low fields, which depends onL, according to equation (8).
For hopping systems, one can determine the internal field from a knowledge ofα, using its
saddle-point valueL ≈ 2αkT /e, at a givenT . α can also be deduced from the reported
T ′0 values atT < Tx in the Efros–Sklowskii regime [4]. The quadrupole momentQ can
be obtained from theT0 values in the Mott’s regime asT > Tx (with α known). From
experiments in which a crossover regime is evidenced deduction ofα andQ can be done
simultaneously, by fitting the data through equations (10a) and (10b), either by using a
universal parametrization as done in [5] (in this case the parameters areα andQ), or on
allowing a dipole contribution as in this work (parameters areα, Q, p). For granular metals
L can be inferred in a similar manner from theT0 values of the conductivity law (12) or
from knowledge of the dimensiond of grains and the ratiod/s [8–11].

Results of conductivity studies reported in the literature refer to n-type Ge, n-type Si,
the III–V compounds GaAs and InP and granular metal alloys [4], superconductors in the
insulating phase [12–15] and systems close to a metal–insulator transition [4] also including
Si:As [16], granulated Sn–Ge and Ag–Ge films [17], crystalline Ge with a high concentration
of defects [18] and superconductors at the metallic border [19–21]. These studies indicate
a ln(σ/σ0) = −(T0/T )

β law with the exponent changing fromβ = 1/4 to β = 1/2
as the temperature is lowered and the composition is varied. A crossover in temperature
between theβ = 1/4 andβ = 1/2 regimes has been reported in insulating compensated
n-type CdSe samples [22], CdTe doped semiconducting samples [23] (see also [5]) and in
non-compensated Si:As [24]. Aharonyet al [5] have shown that these data (referring in
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particular to [22]) can be described by the universal functionf (x) with a proper scaling
temperatureTx and a suitable choice of the parameterA.

Using our parametrization ofT ′0, T0, Tx andA, all such results can be used to deduce
information on the values of the parametersα, Q andp. In table 1 a summary of an analysis
of this kind is reported for representative systems in which either exponent 1/2 or 1/4 is
observed. It includes some exhibiting strong (T0 ≈ 106–107 K), moderate(T0 ≈ 104–105 K)
and weak (vicinity of a metal–insulator transition) insulating character. In the insulating
state, using typical valuesα−1 ≈ 10 A (α ≈ 107 cm−1), T0 ≈ 105 K andε ≈ 10, we find that
the internal fieldL = 2αkT /e has the order of magnitudeL ≈ 105 V cm−1 at T = 100 K
and the quadrupole momentQ = kT0ε/[(3/2)(8/3)4α3e2] as typical order of magnitude
Q ≈ 100 A2. For the harder insulator, the increase ofT0 may be compensated by even
a small decrease ofα (note the cubic dependence ofQ on α) and so the quadrupole may
remain of the same order of magnitude. Close to a metal–insulator transition, the decrease
of T0 (vanishing at the transition) may be compensated by the increase of the localization
lengthα−1 and the dielectric constantε (both diverging at the transition, typical values being
α−1 ≈ 30 A andε ≈ 100 in weakly insulating samples [19]) andQ may remain of the
same order of magnitude or increase. On the other hand, a definite monotonic decrease of
L may be expected on approaching the transition to the metallic state, due to a progressive
decrease ofα.

Table 1. Orders of magnitude of the internal field evaluated atT = 100 K and of the quadrupole
moment for representative materials, as obtained in this work.

T0 value Internal field Quadrupole moment
Material (K) β (×104 V cm−1) (A2)

CdF2:Gd [3] 1 —
SiO films [3] 5 —
Ge:Sb [4] 2× 104 1/4 10 100
Ge:As [4] 210 1/2 1 —
Si:P [4] 2.2× 106 1/4 10 100
Si.P [4] 103 1/2 1 —
n-InP [4] 8× 104 1/4 10 100
a-(Al2O3)1−xWx [4] 102 10 —
LaSrCuLiO [13] 7× 106 1/4 10 100
BaKBiO [21] 1.8× 106 1/4 10 100
La2−xSrxCuO4 [19] 645 1/4 1 100

74 1/2 1 —
Si:As [16] 103 1/4 1 100
Ag:Ge [17] 25 1 100

Table 2. Comparison between the parametrization (α−1, Q, d = p/e) of the data for the most
insulating samples of [22] by means of the functionf (y(x), λ) with T ′x = 6Tx (see text) of
the present work, and the functionf (y(x), 0) with scaling temperatureTx of [5] (ε = 100,
A = 8.03, Tx = 18.1× 10−3 K).

− ln(σ/σ0) α−1 (A)
√
Q (A) d (A)

f (y(x), λ) 441 520 ≈ 3
√
Q

f (y(x), 0) 2650 3160 0
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In table 2 we report the results for the parametersα, Q andp for systems exhibiting
a crossover [22] with a comparison of values obtained with the universal parametrization
of [5]. The results suggest that the same experimental data [2] or similar data [23, 24] may
be consistent with a dipole contribution to the internal field, of length comparable to the
quadrupole length

√
Q. The evaluated order of magnitude of this fieldL = 2αkT /e turns

out to beL ≈ 104 V cm−1.
In conclusion, it can be said that there is evidence from both theoretical and experimental

points of view of internal fields in insulators. In systems having centres of coulombic nature
the field are temperature independent. In hopping systems they are (linearly) temperature
dependent as a result of optimal hopping range between the localized sites.
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